Structure and Anti-Acetylcholinesterase Activity of 4α-(Hydroxymethyl)-4α-demethylterritrem B

Fu-Chuo Peng

Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China

Received February 7, 1997®

The structure of a metabolite produced on incubation of territrem B (1) with rat liver microsomes has been established to be 4α -(hydroxymethyl)- 4α -demethylterritrem B (5). Compound 5 was a potent inhibitor of electric eel acetylcholinesterase (AChE) (E.C. 3.1.1.7).

Territrems A, B, and C are secondary metabolites, isolated from CHCl₃ extracts of cultures of Aspergillus *terreus* 23-1.^{1–3} These compounds induced whole body tremor when injected ip into rats or mice.⁴ It was demonstrated previously that the site of tremorgenic action in animals injected with territrem B (1) was the peripheral motor nerve ending and that functional integrity was necessary for the tremorgenic activity.⁴ It was indicated that 1 might potentiate the release of acetylcholine in the presynaptic area of the peripheral motor nerve ending.⁴ However, it has also been demonstrated that 1 is 20 times more potent than neostigmine in inhibiting AChE activity in human red blood cells.⁵ On investigation of the relationship between the structures and inhibition of AChE activity, five derivatives of 1 were obtained, and their inhibitory potencies on electric eel AChE were tested.⁶ It was concluded that substitution on the aromatic ring of 1 has little effect on anti-AChE activity.⁵ However, the enone and pyrone moieties of 1 seem to play important roles in AChE inhibitory activity.6

Previous work had shown that incubation of 1 with rat liver microsomes produced four metabolites designated MB_1-MB_4 . The reaction was NADPH dependent and enhanced by pretreatment of the rats with phenobarbital.⁷ MB_2 (2) is a major metabolite that arose from hydroxylation of the pro-S methyl group at C4 of 1. MB_4 (3) was identical to territrem C.⁷ MB_1 (4) was shown to be the 4'-demethyl analogue of 2 and the major metabolite obtained from incubation of territrem C with rat liver microsome.⁷ The structure of MB_3 (5) was not determined previously. A large-scale incubation experiment has provided sufficient 5 for elucidation of its structure and inhibitory effect on eel AChE. The results are described in this paper.

The ¹H- and ¹³C-NMR spectra of **5** were similar to those of **1** except that the signals assigned to the 4 α -methyl of the latter were absent and had been replaced by an AB pattern at $\delta_{\rm H}$ 3.27, 4.08 (J = 10.8 Hz) and by a triplet at $\delta_{\rm c}$ 69.44. The HRFABMS showed an [M + 1]⁺ at m/z 543.2224 consistent with a hydroxylated derivative of **1** having molecular formula C₂₉H₃₄O₁₀. The hetero-COSY spectrum revealed the relationship between the signals of a hydroxymethyl group. This information indicates that **5** is the C-4 epimer of **2** (Figure 1).

The inhibitory activity of 1 and 5 on electric eel AChE was evaluated by the colorimetric method.⁹ The IC_{50} of 1 on eel AChE was 2.6 \times 10⁻⁷ M, and the IC_{50} of 5

Figure 1. The structure of territrem derivatives.

was 4.23×10^{-10} M, indicating that **5** is 68 times more potent than **1**. The data (Table 2) showed that **5** is the most potent inhibitor of eel AChE (of **1** and its derivatives tested).

Experimental Section

General Experimental Conditions. The melting point was measured on a hot-stage melting point apparatus (Shimatzu Seisakusho Ltd.) and was uncorrected. The mass spectrum was recorded using a JEOL JMS-HX 110 mass spectrometer. ¹H- and ¹³C-NMR spectra were recorded in CDCl₃ on a Bruker AMX 400 spectrometer using solvent peaks as the reference standard.

Extraction and Isolation of 1. Compound **1** was isolated from rice culture of *Aspergillus terreus* 23–1 according to previously published procedures.^{1–3} ¹H- and ¹³C-NMR data; see Table 1.

Preparation of 5. Male Wistar rats, weighing 200– 250 g, were fed freely with a phenobarbital– H_2O solution (sodium salt, Wako Pure Chemical Industries, Ltd., 1 g/L H_2O) for two weeks and sacrificed on the 15th day. The preparation of the S₉ fraction from the rat livers followed the method of Maron and Ames.⁸ The solution contained 20 μ L S₉ (4 mg/mL protein), 0.1 M NADP (20 μ L) (Sigma), 0.4 M KCl–1.65 M MgCl₂ solution (10 μ L), 0.1 M glucose-6-phosphate solution salt (5 μ L) (Sigma), 0.1 M sodium phosphate buffer (250 μ L), pH 7.4, and distilled H₂O to make the final volume to 500 μ L. After the solution was preincubated at 37 °C for 30 min, 4 μ L of **1** (1 mg/mL MeOH) was added. An

R₁ R₂ R₃ CH₃O CH3 1 CH3 2 CH₃O CH₂OH CH₃ 3 OH CH₃ CH₃ CH₂OH 4 он CH₃ 5 CH₃O CH3 CH₂OH

[®] Abstract published in *Advance ACS Abstracts*, July 15, 1997.

Table 1. ¹H- (400 MHz) and ¹³C- (100 MHz) NMR Data (CDCl₃, δ) for 1 and 5

position	1		5	
	$\delta_{ m H}$ (<i>J</i> , Hz)	δ_{C}	$\delta_{ m H}$ (<i>J</i> , Hz)	δ_{C}
1		204.47 s		203.88 s
2	5.81 (d, $J = 10.0$)	123.30 d	6.08 (d, $J = 10.0$)	126.68 d
2 3	6.29 (d, $J = 10.0$)	153.41 d	6.51 (d, $J = 10.0$)	151.39 d
4		42.59 s		46.53 s
4a		79.06 s		79.69 s
5		25.75 t		26.19 t
5α, 5 <i>β</i>	1.85-1.89 (m)		1.85-2.09 (m)	
6		28.45 t		28.27 t
6α	1.79–1.81 (m)		1.79-1.85 (m)	
6 β	2.40-2.47 (m)		2.44 - 2.52 (m)	
6a		79.97 s		82.66 t
7a		162.83 s		162.83 s
8	6.30 (s)	97.56 d	6.35 (s)	97.46 d
9		158.47 s		158.72 s
11		164.31 s		164.26 s
11a		97.27 s		96.99 s
12α	3.41 (d, $J = 18.0$)		3.41 (d, $J = 17.8$)	
12β	2.84 (d, $J = 18.0$)		2.83 (d, $J = 17.8$)	
12		27.86 t		27.79 t
12a		76.10 s		77.32 s
12b		56.29 s		55.81 s
4α-Me	1.24 (s)	23.83 q		
4α -CH ₂			3.27, 4.08 (d, J = 10.8)	69.44 t
4β-Me	1.15 (s)	25.44 q	1.23 (s)	19.33 q
6a-Me	1.49 (s)	23.80 q	1.51 (s)	24.00 g
12b-Me	1.43 (s)	21.79 q	1.43 (s)	21.65 g
1′		126.72 s		126.68 s
2′,6′	6.96 (s)	102.77 d	6.98 (s)	102.83 d
3′,5′	• •	153.44 s	• •	153.50 s
4'		140.31 s		140.43 s
3′,5′-OMe	3.87 (s)	56.21 q	3.89 (s)	56.33 q
4'-OM4	3.86 (s)	60.94 q	3.88 (s)	60.98 q

Table 2. Inhibition of Electric Eel Acetylcholinesterase by

 Territrem B (1) Derivatives

compound	in vitro I_{50} (M) ^a	
1	$2.60 imes 10^{-7}$	
2	$7.9 imes10^{-7a}$	
5	$4.23 imes 10^{-10}$	
BW284C51 ^b	$1.0 imes10^{-8}$	

 a I_{50} values were calculated by probit analysis from responses obtained from eight doses of inhibitor, each differing by an order of magnitude. See Chen and Ling.⁵ b BW281C51: 1,5-bis[4-(allyldimethylammonio)phenyl]pentan-3-one dibromide, see Chen.¹¹

additional 60-min incubation was carried out at 37 °C by shaking (100 oscillations/min). The reaction was stopped by adding 1 mL MeOH. The reaction mixture was centrifuged at 15 000 rpm, and then 100 μ L of the supernatant was taken for HPLC analysis. For isolation of large quantities of the product, the amounts of the above-described reaction mixture were scaled up to 200-fold and divided into 14 Erlenmeyer flasks. To each flask (250 mL), 32 mg of **1** (1 mg/mL MeOH) was added. Compound **5** (0.32 mg) was separated via preparative TLC [C₆H₆-EtOAc-HOAc-HOAc (6:3:1)] and finally purified by ODS HPLC [MeCN-H₂O (6:4)].

4α-(Hydroxymethyl)-4α-demethylterritrem B (5): mp 240–242 °C (from CHCl₃); UV (MeOH) λ_{max} (log ϵ) 331 (1.1), 218 (3.2); ¹H- and ¹³C-NMR data; see Table 1, FABMS *m*/*z* [M + 1]⁺ 543 (92), 524 (9), 509 (14), 359 (5), 291 (44), 237 (14), 214 (24), 195 (68); HRFABMS *m*/*z* [M + 1]⁺ 543.2224 (calcd for C₂₉H₃₄O₁₀, 542.2152).

Assay of Acetylcholinesterase. The AChE activity was determined by the method of Ellman *et al.*⁹ Typically, an aliquot of $20-40 \ \mu$ L of the working enzyme solution or of the inhibited specimen was added to 1 mL of the assay system containing 4.8×10^{-4} M acetylthiocholine and 3.2×10^{-4} M DTNB in a 0.1 M phosphate

buffer, pH, 8.0. The initial rate of substrate hydrolysis was determined at 412 nm at room temperature using a Beckman spectrophotometer. The activity of AChE was calculated according to Gordon *et al.*¹⁰

Acknowledgment. This work was supported by grant NSC85-2621-B-002-026 Z. The author is indebted to Dr. Kuo-Huang Ling, Institute of Biochemistry, and Dr. Shoie-Sheng Lee, School of Pharmacy, College of Medicine, National Taiwn University, for reading the manuscript and for suggestions.

References and Notes

- Ling, K. H.; Yang, C. K.; Peng, F. C. Appl. Environ. Microbiol. 1979, 17, 355–357.
- (2) Ling, K. H.; Liou, H. H.; Yang, C. M.; Yang, C. K. Appl. Environ. Microbiol. 1984, 47, 98–100.
- Yang, C. K. Studies on territrems from *Aspergillus terreus*: isolation, assay methods, molecular structure. Ph.D. Thesis, Institute of Biochemistry, College of Medicine, National Taiwan University, Republic of China, 1981; pp 16–39.
 Ling, K. H.; Liou, H. H.; Fu, T. C.; Kuo, L.; Tasi, M. C.; Lin, M.
- (4) Ling, K. H.; Liou, H. H.; Fu, T. C.; Kuo, L.; Tasi, M. C.; Lin, M. Y. Mechansim of action of the territrem, tremorgenic mycotoxin isolated from *Aspergillus terreus*. In *Mycotoxins and Phycotoxins*, Steyn, P.S., Velggaar, R., Eds. 6th International IUPAC Symposium on Mycotoxins and Phcotoxins. Elsevier: Amsterdam, 1985; pp 387–298.
- 1985; pp 387–298.
 (5) Chen, J. W.; Ling, K. H. *Territrem, an Inhibitor of Acetylcholinesterase* ROC–Japan seminar on mycotoxins, National Taiwan University, Taipei, 1991, Sep 22–24, p 24.
- (6) Peng F. C. J. Nat. Prods. 1995, 58, 857–862.
- (7) Ling, K. H.; Chiou, C. M.; Tseng, Y. L. Drug. Metab. Dispos. 1991, 19, 587.
- 8) Maron, D. M.; Ames, B. Mutat. Res. 1983, 113, 171-205.
- (9) Ellman, G. L.; Courtney, K. D.; Andres, V., Jr.; Featherstone, R. M. Biochem. Pharmacol. 1961, 77, 88–95.
- (10) Gordon, A.; Carpenter, D. E.; Wilson, I. B. Mol. Pharmacol. 1978, 14, 266–270.
- (11) Chen, J. W. Inhibition mechanism of acetylcholinesterase by territrem. Ph.D. Thesis, Institute of Biochemistry, College of Medicine, National Taiwan University, Republic of China, 1991; p 17.

NP9701236